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Abstract— This study focuses on a layered, experience-based,
multi-modal contact planning framework for agile quadrupedal
locomotion over a constrained rebar environment. To this
end, our hierarchical planner incorporates locomotion-specific
modules into the high-level contact sequence planner and
solves kinodynamically-aware trajectory optimization as the
low-level motion planner. Through quantitative analysis of the
experience accumulation process and experimental validation
of the kinodynamic feasibility of the generated locomotion tra-
jectories, we demonstrate that the experience planning heuristic
offers an effective way of providing candidate footholds for a
legged contact planner. Additionally, we introduce a guiding
torso path heuristic at the global planning level to enhance
the navigation success rate in the presence of environmental
obstacles. Our results indicate that the torso-path guided ex-
perience accumulation requires significantly fewer offline trials
to successfully reach the goal compared to regular experience
accumulation. Finally, our planning framework is validated in
both dynamics simulations and real hardware implementations
on a quadrupedal robot provided by Skymul Inc.

I. INTRODUCTION

The task of legged locomotion elicits a hybridized plan-
ning space that combines discrete elements like robot end ef-
fectors and environmental artifacts that can support footsteps
along with continuous footstep positions along such artifacts.
Methods that opt to perform simultaneous contact and foot-
step position planning often struggle to do so in a tractable
manner because of this hybrid planning space. The need for
kinodynamically-feasible solutions to this planning problem
further compounds the computational efforts required.

An alternative way to resolve contact planning is through a
hierarchical approach in which a discrete contact sequence is
generated at the higher level and then continuous whole-body
trajectories that abide by the generated contact sequence
are synthesized at the lower level. The separation of the
planning space into discrete and continuous components
computationally simplifies the overall planning problem.

This planning decomposition reflects those widely ex-
plored in the areas of task and motion planning (TAMP)
[1]–[3] and multi-modal motion planning (MMMP) [4]–
[6]. These areas have proposed numerous effective planning
heuristics that allow the discrete and continuous planning
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Fig. 1: Illustration of a quadrupedal robot performing rebar grid traversal
in a simulated construction environment [7] and an indoor test-bed.

layers to inform each other and coordinate useful planning
attempts. However, traditional MMMP have seen limited
use in dynamic locomotion due the combinatorial nature of
contacts which makes the problem difficult to scale up and
the inherently dynamic process of legged locomotion which
imposes complex constraints on motion planning.

In this work, we draw inspiration from the Augmented
Leafs with Experience on Foliations (ALEF) framework [5]
for multi-modal planning. In particular, we design a novel
hierarchical planning framework to solve kinodynamically-
feasible quadrupedal locomotion plans, taking into account
the robot’s centroidal dynamics and kinematic reachability.
This study marks the first effort that leverages model-based
trajectory optimization (TO) in the design of the experience
heuristic for quadrupedal locomotion multi-modal planning.
Our main contributions are summarized as below:

1) Adapting mode families and a mode transition graph
to quadrupedal contact planning along with a carefully
designed experience heuristic to weight the mode tran-
sition graph and guide contact sequence planning;

2) Integrating mode transition graph search with lower-
level TO to naturally embed footstep planners and
tightly integrate the kinodynamically-aware optimal
cost from TO into the experience heuristic;

3) Integrating this multi-modal contact planner into a
navigation framework to exploit a guiding torso path;

4) Experimental validation of the proposed framework
for rebar grid traversal through quantitative analysis
in both simulations and hardware implementation.

II. RELATED WORK

A. Contact Planning

Within the quadrupedal contact planning domain, there
exists a trade-off between solution quality and computational
cost. In the simplest case, fixing contact schedules and gen-
erating nominal footstep positions through Raibert heuristics
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[8] allows for online planning at high frequencies [9], [10].
However, such approaches sacrifice the ability to adjust foot-
steps in response to the environment. To combat this rigidity,
some methods augment nominal footstep positions through
learned networks [11], [12], nonlinear programs [13], [14],
and control barrier functions [15]. Through simplifications
such as pre-defined gait sequences or discrete search spaces
for footholds, these can also be run in real-time.

Some methods resolve all elements of footstep planning
(gait sequences, contact positions) and whole-body trajecto-
ries in one module, often through contact-timing optimiza-
tion [16], mixed-integer programs [17], [18], soft contact
modeling [19], or linear complementarity constraints [20].
While such approaches generate complex, highly dynamic
motions, running such planners online is out of the question.

Instead of solving a joint optimization problem, many
contact planning frameworks [6], [21], [22] employ a hi-
erarchical planning structure, making the key design choice
of selecting contacts first and then synthesizing whole-body
motions. For bipedal platforms, contact transition models
are limited enough to achieve real-time footstep planning
through either pure search [23]–[26] or pure optimization
[17]. Due to the more aggressive scaling in quadrupedal
planning, it becomes crucial to cater particular planning
approaches to particular subproblems.

B. Multi-modal Planning

A common approach to frame complex long-horizon tasks
is through a discrete-continuous or multi-modal motion
planning (MMMP) formulation. For manipulation, a mode
typically corresponds to a particular contact or grasp con-
figuration between end effectors and objects [3], [5], [27]–
[29]. On the other hand, in the realm of locomotion, a mode
may represent a contact configuration [21], a gait [30], [31],
or a motion primitive [32]. In the context of TAMP, these
modes are often represented by symbolic states or logic rules
depending on particular problem domains [1]–[3], [33].

Existing MMMP frameworks often search over a mode
graph which defines valid transitions to obtain mode se-
quences. Continuous motion planning, whether it be sam-
pling, spline generation, or trajectory optimization (TO) is
then performed at the lower level to resolve mode tran-
sitions. The works of [30], [33], [34] use the results of
lower-level TO programs to inform graph edge weights.
Other approaches train neural networks to estimate system
dynamics [35], the costs of optimization programs [32], or
the feasibility of a candidate action [36]–[38].

One particular heuristic of interest is the experienced-
based framework ALEF [5] which exploits the implicit
continuous manifolds that arise from contact constraints to
disperse the results of offline planning queries throughout the
mode graph. This makes for a sample-efficient framework
that can apply informed weights to unvisited contact tran-
sitions. Many such heuristics, including that of experience,
have yet to be leveraged in quadrupedal contact planning.
Recent work [29] has shown how TAMP and MMMP enable

quadrupeds to rapidly perform complex loco-manipulation
tasks such as manipulating and passing through a door.

III. PRELIMINARIES

We provide background information on the planning prob-
lem we attempt to solve while detailing important concepts
of multi-modal planning for quadrupedal locomotion.

A. Centroidal Dynamics Model

A quadrupedal locomotion model can be modeled by cen-
troidal dynamics, bridging the complex full-body dynamics
and simple center-of-mass (CoM) dynamics. This model
constrains the rate of centroidal momentum to be:

ḣ =

[ ∑
j fj +mg∑

j(cj − r)× fj + τ j

]
(1)

where h = [k, l]T ∈ R6 is the centroidal momentum that
includes linear k ∈ R3 and angular l ∈ R3 momentum. m is
the robot mass, r ∈ R3 is the robot CoM position, fj ∈ R3

is the contact force at jth foot, g ∈ R3 is the acceleration
vector of gravity, cj ∈ R3 is the contact position of foot j,
and τ j ∈ R3 is the contact torque of foot j. By using the
centroidal momentum matrix (CMM) A(q) ∈ R6×(6+nj)

[39], the centroidal momentum can also be expressed as:

h =
[
Ab(q) Aj(q)

]︸ ︷︷ ︸
A(q)

[
q̇b

q̇j

]
(2)

where q = [qb,qj ]
T ∈ R6+nj is the robot configuration. The

robot configuration includes nj joints and the six degrees of
freedom (DOF) for the floating base pose.

B. Environment Specifications

We ground this proposed work in the task of quadrupedal
rebar traversal. Therefore, it is important to outline the details
of the environment before moving on to further sections.

The rebar grids in this work are comprised of a set of bars
B. A bar b ∈ B is defined by a starting point p0 ∈ R3 in
the rebar grid frame B, a length l, and an orientation θ with
respect to the rebar grid frame in the x−y plane of the grid.
Grids are comprised of Nh horizontal and Nv vertical bars,
and they can also include a set of obstacles O positioned
along their surface. Obstacles poses and shapes are assumed
to be known. A set of example grids are shown in Figure 2.

(a) (b) (c) (d)

Fig. 2: Set of rebar grids. (a) Normal grid, (b) skewed grid, (c) grid with
variably spaced bars, (d) grid with obstacles.



C. Contact Manifolds

In this section, we present the manifold terminologies
from the ALEF framework in the context of quadrupedal
locomotion. More details can be found at [5].

In legged locomotion, a contact mode ξ can be viewed as
a set of footholds at unique positions along a set of step-
pable objects such as planar stepping stones or linear rebar
poles. From this contact mode ξ, a lower-dimensional mode
manifold Mξ embedded in the configuration space Q arises
which encompasses all of the whole-body configurations that
satisfy the foothold positions. As the foothold positions vary
along the steppable objects, different contact manifolds arise.

The set of all contact modes corresponding to the same
set of steppable objects can be grouped into a mode family
Ξ. From each mode familiy Ξi arises a foliated manifold, or
a foliation FΞi

. An n-dimensional foliation M is a manifold
defined by a nχ-dimensional transverse manifold X , a set
of non-overlapping (n−nχ)-dimensional leaf manifolds Lχ

∀χ ∈ X , and lastly a projection operator π : M → X .
Elements of the transverse manifold χ ∈ X are called

coparameters. A coparameter χ uniquely parameterizes a
mode ξ (and subsequently a leaf manifold Lχ = Mξ), and
for our use case, the position of footholds along steppable
objects within the given mode family. Therefore, a mode ξ
can be viewed as the tuple of a mode family Ξ and a unique
coparameter χ. The union of leaf manifolds along the set of
coparameters

⋃
χ∈X Lχ recovers the entire foliation M.

A leaf or mode manifold Mξ can be implicitly defined
through a constraint function F ξ : Rn → Rn

χ where a
configuration q lies on the mode manifold if F ξ(q) = 0.

In the proposed work, a mode represents three stance legs
in contact with three separate rebars. Therefore, an example
constraint function for a contact mode is

F ξ(q) :=
[
F ξ
1 (q), F

ξ
2 (q), F

ξ
3 (q)

]T
, (3)

where for a foot j in contact with bar b = {p0, l, θ}, then

F ξ
j (q) :=

FKx
j (q)− (px

0 + χj · l · cos(θ))
FKy

j (q)− (py
0 + χj · l · sin(θ))

FKz
j (q)− pz

0

 = 0, (4)

where FKj(q) gives the position of foot j given q via
forward kinematics (FK).

IV. MULTI-MODAL PLANNING

Given the prior information, the planning problem we
are trying to solve is as follows. Assume a quadrupedal
robot with a configuration space Q ⊂ Rnq . We seek to
find a collision-free path q(s) with s ∈ [0, 1] from a start
configuration q(0) = qstart to a goal configuration q(1) =
qgoal. Contact must strictly be made with the set of bars B,
and collisions with obstacles O should be avoided.

A. Mode Transition Graph Construction

We employ a mode transition graph G in the spirit of
the ALEF framework in which the mode families comprise
the set of vertices V in G = (V, E). The edges E are
then formed between mode families for which kinematically

Fig. 3: Kinematic reachability areas along with projected configuration
samples. Some samples that meet the distance threshold are set as outliers
to avoid reachable areas that yield unstable contacts or self-collisions.
feasible transitions exist. In the configuration space, edges
are formed between mode families which have foliations that
intersect, enabling mode transitions. The process in which
edges are constructed is defined now.

We utilize locomotion-specific problem constraints to im-
plicitly define feasible transitions within the mode transition
graph. First, a user-defined contact sequence informs the
graph on the robot’s footfall pattern. A transition from a
vertex vi to vertex vj (equivalently, mode family Ξi to mode
family Ξj) is only added if the swing leg at vi and the swing
leg at vj occur sequentially in the contact sequence.

Second, we incorporate kinematic reachability analysis to
approximate what regions of the ground are contactable by
the robot’s legs. This is then used to determine what contact
transitions are kinematically feasible. In this work, we use
a family of functions known as superquadrics that has seen
recent use in legged locomotion [40]. The set of points that
fall within the superquadric centered at (x0, y0) are

S =
{
(x, y) ∈ R2

∣∣∣ ∣∣x− x0

A

∣∣a + ∣∣y − y0
B

∣∣b ≤ 1
}
, (5)

where scalars A,B and a, b control dimensions and curva-
ture. Parameters were obtained through randomly sampling
configurations, keeping all samples that reach within a dis-
tance threshold ϵ = 1 cm of the ground, and tuning parameter
values to encompass the samples in contact (see Figure 3).

For clarity, a fraction of the mode transition graph with
these two constraints incorporated into the feasible transi-
tions is visualized within the higher level of Figure 4.

B. Mode Transition Graph Search

We formulate the task of finding a discrete foothold
sequence as a graph search problem over the aforementioned
mode transition graph. We employ the A* search algorithm
for this mode transition graph search. For the search, we dis-
cretize along the transverse manifold of each mode family to
generate “slices” of the foliations that correspond to intervals
of foothold positioning. Edges are then added between all
slices of the source and destination mode families in which
contact transitions exist in the graph. This discretization
allows for the search to reason about both contact sequencing
(what rebar objects to contact with which feet) and foothold
sequencing (where to make contact). This search provides a
candidate lead: a sequence of mode families and coparameter
values that define a foothold sequence from the start to goal.
The relevant costs and weights are defined below.



1) Edge weight: For a transition between source mode
ξsrc = ⟨Ξsrc,χsrc⟩ and destination mode ξdst = ⟨Ξdst,χdst⟩,
the graph edge e = (ξsrc, ξdst) is assigned the weight

∆c(ξsrc, ξdst) = wD · DΞsrc,Ξdst(χsrc,χdst)+

wd · dCoM(ξsrc, ξdst) + wτ · dτ (ξsrc, ξdst),
(6)

where the distribution DΞsrc,Ξdst(χsrc, χdst) captures the
difficulty of transitioning from ξsrc to ξdst. This distribution
is estimated offline through the experience heuristic which
is detailed in Section V. The term dCoM(ξsrc, ξdst) is the
Euclidean distance between nominal CoM positions for ξsrc
and ξdst, and dτ (ξsrc, ξdst) is the deviation of modes nominal
CoM positions for ξsrc and ξdst from a suggested torso path.
This path can come from any planner that generates a se-
quence of torso poses from start to goal, and implementation
details on this suggested torso path are given in Section VI.

2) Cost-to-go: For the A* search, a contact mode ξ =
⟨Ξ, χ⟩ is assigned the search heuristic value

g(ξ) = wd · dCoM(ξ,Ξgoal) (7)

to ensure an admissible search heuristic and therefore provide
optimal foothold sequences with respect to edge weights.

C. Whole-Body Trajectory Optimization

At the motion planning level, we opt to use trajectory op-
timization (TO) as opposed to the sampling-based planning
methods [41]–[43] commonly use in MMMP to generate
dynamics-aware continuous paths that enable the robot to
transition between mode families. While the TO sacrifices
the probabilistic completeness that is offered by sampling-
based methods, our approach enables kinodynamically-aware
multi-modal contact planning which has not been explored
in prior works. Similar to [44]–[46], our TO problem solves
over the robot state x = [h,qb,qj ] and the robot input
u = [f ,vj ], except that the coparameters χ of the destination
mode family decides the contact position c.

The TO formulation is shown as:

∥x[N ]− xdes[N ]∥2Qf
+

min
x,u

N−1∑
k=0

(
∥x[k]− xdes[k]∥2Q + ∥u[k]∥2R

)
subject to

(Mode) F ξsrc(q[k]) = 0, F ξdst(q[N ]) = 0 (8a)

(Dynamics)

 ḣ[k]
q̇b[k]
q̇j [k]

 =

 D(q[k], f [k])
A−1

b (h[k]−Ajvj [k])
vj [k]

 (8b)

(Friction) fj [k] ∈ Fj(µ,q) ∀j ∈ Csrc (8c)
fj [k] = 0 ∀j /∈ Csrc (8d)

(Collision) g(q[k]) ≥ 0 ∀k ∈ [0, N ] (8e)

where ξsrc = ⟨Ξsrc, χsrc⟩, ξdst = ⟨Ξdst, χdst⟩, and Csrc
represents the set of stance feet for the source mode. Note
that at the TO level, the destination mode family is fixed, but
the coparameter is treated as a decision variable, allowing
for variation of the destination mode. We formulate the

Fig. 4: Overall diagram showcasing problem structure. A graph search is
performed over mode transitions using the estimated weight distributions
from experience (colored by their corresponding swing foot). Then, the
suggested contact sequence is run through trajectory optimization to deter-
mine the costs Ji,i+1 of the transitions.

above TO as a Sequential Quadratic Program (SQP) and
solve through the OCS2 library [47]. We employ a time
horizon of T = 0.5 seconds and N = 50 knot points
with maximal 250 iterations. For the collision avoidance
constraint, we run the Gilbert-Johnson-Keerthi algorithm
[48] provided by the HPP-FCL library [49] and use the
Pinocchio library for kinematics and dynamics calculations
[50]. xdes is generated in two steps, first, the mode constraint
functions from constraint (8a) are used in a contact projection
step to project a randomly sampled target configuration into
contact satisfying the source and destination modes. If this
first step is successful, cubic splines are then synthesized
for the swing feet to build out the remainder of xdes. If
the optimal cost of an attempted mode transition is above a
threshold Jmax, then the planning trial is terminated early.

V. PLANNING WITH EXPERIENCE

The objective of planning with experience is to acquire
a continuous function that captures the difficulty or cost of
attempting certain contact transitions within the environment
which are encoded as the edges of our mode transition graph.

A. Optimal Cost Integration

There are two potential outcomes of a transition attempt:

1) Contact projection fails to generate a target configura-
tion, suggesting an infeasible transition (Jsrc,dst = ∞)

2) Contact projection generates a target configuration,
triggering a TO instance (Jsrc,dst = Equation 8)

The experience heuristic allows us to infer from previously
attempted mode transitions the cost of nearby, possibly
unattempted mode transitions. While a transition between
two modes may be kinematically infeasible, infeasibility does
not necessarily hold for all modes between the two mode
families. Therefore, weighting the entire transition with a
cost of infinity could inhibit discovery of a path to the goal,
especially in situations where foothold location is crucial
to successful locomotion. To account for this, cost values
Jsrc,dst are first passed through a weighted tanh function

δsrc,dst = w1 tanh (w2 · Jsrc,dst + w3), (9)



where w1, w2, and w3 are positive scalar values, to map the
costs to finite positive penalties that can be used to populate
the edge weights in the mode transition graph.

B. Experience Accumulation

The smoothness of contact manifolds allows us to exploit
prior planning results to inform estimates regarding similar
contact transitions. This is predicated on the idea that since
foliations are smooth, coparameters nearby on the transverse
manifold parameterize modes that are similar in cost.

Once the penalty values are obtained from a given TO
run, they can be distributed throughout the graph in the form
of experience. To distribute penalties throughout all modes
within a given mode family, we employ function regression
techniques that involve constructing a weighted sum of basis
functions that is meant to estimate the continuous distribution
of the average penalty value at different contact positions. In
this work, we model this distribution as the weighted sum
of radial basis functions (RBFs), where the update applied
to the weights of the traversed edge is

fΞsrc,Ξdst(χsrc,χdst) = we · exp(
−d(χsrc,χdst)

2

2 · σ2
) (10)

where
we = (Jsrc,dst − J̄ ) (11)

where Jsrc,dst is the cost obtained from the attempted mode
transition, J̄ is the average transition cost between ξsrc and
ξdst, d(χsrc,χdst) represents the distance of a coparameter
to (χsrc,χdst), and σ represents the standard deviation of
the RBF. This update adds a basis function to the weight
distribution of each traversed edge that is centered at the
attempted coparameter value and weighted by its deviation
from the average cost of the attempted mode transition.

VI. EXPERIMENTAL RESULTS

In this section, we perform offline experience accumula-
tion in which where a batch of planning trials are run in order
to populate the weight and demonstrate the resultant whole-
body motion plans output by the proposed framework. Within
each planning trial, the high-level graph search provides a
candidate contact sequence which is passed to the lower level
of the framework where a sequence of trajectory optimization
subproblems are solved to generate contact transitions.

Case studies in three environments are performed: (i) a
grid with low-height obstacles scattered along its surface
(Section VI-A), (ii) a grid with a tall obstacle positioned
between the start and goal configurations (Section VI-B),
and (iii) a grid with various obstacles meant to emulate a
real-world constriction site. These three grids, along with
outputted reference trajectories, are visualized in Figure 5.

For three case studies, we record computation times of
the graph search triggered for each planning trial as well as
average, minimum, and maximum TO solve times across all
of the attempted subproblems within each planning trial. Ad-
ditionally, we report the results of all subproblems – success,
failure, or not attempted due to early trial termination – as
well as the total path costs for the trials that reached the goal.

Fig. 5: Rebar grid layouts used in the case studies in Sections VI-A - VI-C.

Lastly, reference trajectories obtained from our framework
are deployed on a quadruped on a real world rebar grid and
tracking performance is evaluated (Section VI-D).

A. Footstep Adjustment through Experience

In this first case study, we demonstrate the key role that
the weight distributions obtained through experience play
in successful contact planning. We deploy the planner on
a rebar grid with short, foot-level obstacles along its surface,
and through offline experience accumulation the planner
ascertains what contact transitions allow the robot to reach
the goal without collisions. Results are shown in Figure 6.

Fig. 6: Results for Section VI-A: Case Study 1 on the grid in Figure 5(a).

We initially performed 500 planning trials with all
experience-based weight distributions initialized uniformly
to DΞsrc,Ξdst(χsrc,χdst) = 0.01, but the planner failed to
reach the goal on any of the trials due to the extensive period
of graph exploration required to appropriately estimate the
weight distributions. We then performed a second run of
offline trials where we initialized the weight distributions to
priors based on proximity of the mode transitions to obstacles
in the environment. With these priors, the planner was able
to explore a greater portion of the mode transition graph and
ultimately find successful contact plans to the goal in far
fewer trials. During initial trials, mode transitions that collide
with obstacles are attempted, leading to extremely prohibitive
and highly variant TO times. However, after roughly 30 trials
the planner is able to suggest collision-free contact plans,
greatly reducing both the mean and variance of TO solve
times. In this environment, the torso planner does not provide
any useful insights on planning given that all obstacle exist
at the foot level, and the key heuristic that enables successful
planning to the goal in such an environment is the weight
distribution accumulated from experience.

B. Torso Path-Guided Experience Accumulation

In this section, we perform an ablation study in which the
multi-modal contact planner is run both with and without a
guiding torso path planner. The incorporation of this planner



emulates common navigation frameworks which perform
coarse, low-frequency torso planning that provides guiding
paths to a lower-level footstep planner that synthesizes
whole-body trajectories. We formulate the torso path planner
as an additional A* graph search where the graph nodes
are the set of intersections along the rebar grid. Edges
are added between adjacent grid intersections and edge
weights are assigned based on proximity to inflated obstacles
and Euclidean distances between the source and destination
intersections. Results are shown in Figures 7a and 7b.

(a) Results for experience accumulation with the guiding torso path.

(b) Results for experience accumulation without the guiding torso path.

Fig. 7: Results for Section VI-B: Case Study 2 on the grid in Figure 5(b)

Due to the large obstacle positioned between the start and
goal, the added torso planner greatly expedites experience
accumulation. The guiding torso path biases the multi-modal
contact planner towards obstacle-free regions of the grid
which take far less time to locomote through with TO.
Without the torso path, the mode transition graph search
takes the shortest path from start to goal which runs through
the obstacle, leading to much higher TO times and less
overall exploration of the graph. One drawback of instituting
the guiding torso path is that the graph search times increase
significantly due to the introduction of the complicated torso
path deviation term into the graph edge weight function.

C. Holistic Collision Avoidance through Experience

In the third case study, we demonstrate our framework’s
ability to reason through complicated rebar environments
with obstacles at both the torso level and the foot level.
Larger pillars and beams are avoided through following
the guiding torso path while barriers and debris on the
grid surface are avoided through adjust footstep positioning
through experience. Results are shown in Figure 8.

In this study, there are some early planning trials that
successfully reach the goal. This is largely due to the
presence of the guiding torso path manuevering the resulting
contact sequences around large obstacles. However, it is over
the course of the experience accumulation that the mode
transitions which allow the robot to step over the barrier

Fig. 8: Results for Section VI-C: Case Study 3 on the grid in Figure 5(c).

spanning across the grid and the clutter on the left side
of grid are discovered. This complicated environment gives
rise to higher graph search times than those observed in
the previous case studies. Also, more planning trials are
required to appropriately estimate the edge weights within
the graph. However, our framework still only requires 80
trials to generate contact sequences with consistently short
solve times at the TO level that allow robot to reach the goal.

D. Hardware Implementation

To ensure that trajectories generated by our framework
can be robustly deployed on real systems, we set up a rebar
scenario and perform online executions on a quadrupedal
rebar-tying robot – Chotu. We employ an MPC-WBC track-
ing controller modified from [46]. The MPC solves a similar
centroidal dynamics optimization as (8) at 100 Hz but with
the fixed contact sequence from our framework. An end-
effector constraint is added to accurately track the reference
swing foot trajectory, which is crucial to successful rebar
traversing. The WBC solves a hierarchical QP at 500 Hz. The
state estimator fuses IMU data, joint encoders, and motion
capture inputs to provide accurate body position information.

Fig. 9: Hardware demonstration of Chotu performing rebar traversal. (a)
Real-world rebar grid setup. (b) Rebar traversal in dynamics simulation.
Colored lines denote desired position trajectories for robot torso and feet.
(c) Comparison of reference trajectory and measured robot states.

We validate the trajectories generated by our framework
on one real-world example. As shown in Fig. 9 (a) and (b),
the robot Chotu is commanded to move from the top left
corner of the rebar grid to the middle right with an obstacle
is blocking in the way Fig. 9 (c) demonstrates a favorable
tracking performance with insignificant body pose and foot
error regarding the body pose and foot locations.



VII. CONCLUSION

In this work, we adapt an efficient multi-modal contact
planner to the task of quadrupedal rebar traversal. We accu-
mulate offline experience to estimate optimal cost distribu-
tions using the results of lower-level trajectory optimization
instances. In the future, we aim to incorporate vision as a
means to generate more informed priors on optimal cost
distributions and perform reactive planning.
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